Emission inventory supported by R

dependency between calorific value and carbon content for lignite.

Damian Zasina†, Jarosław Zawadzki‡

† Institute of Environmental Protection – National Research Institute,
National Centre for Emission Management
‡ Warsaw University of Technology, Faculty of Environmental Engineering

10 July, 2013
Outline

Introduction
 The beginning – Convention on the Climate Change
 To make long story short . . .

Why analysis of lignite?
 Significance of fuel

Current methodology
 How to?
 Fott's approach
 Current Polish methodology
 "Kolubara lignite approach"

Model for lignite from Bełchatów
 Assumptions
 Equation
 Still linear dependency
 Comparison of formulas
 Monte Carlo simulation
 Advantages/disadvantages

End

References
Introduction I

The beginning – Convention on the Climate Change (UNFCCC)

- COP 1 – Berlin Mandate (1995) 🇩🇪
 Annex I countries (including EiT) – 41 countries,
 Non-Annex I countries – developing countries;
- COP 3 – Kyoto Protocol (1997) 🇯🇵
 ratified by Russian Federation (2004),
 entered into force (2005) (...);
- COP 14 – Poznań (2008) 🇵🇱
Activities connected with the Convention on the Climate change ”have begun” in 1992 in Rio de Janeiro;

The Berlin Mandate (1995) distinguished Annex I countries (responsible for historical emissions of GHGs);

The emission inventory is one of obligations under UNFCCC;

Under Kyoto Protocol, Annex I countries are obliged to reduce emissions of GHGs (CO₂ i.a.).
Why analysis of lignite? I

Structure of fuels used in utility plants in Poland¹ years: 1988–2011

¹Electricity and heat production – gross consumption of fuels.
Why analysis of lignite? II

According to the available sources of information:

- **Share** of lignite combusted in public utility plants\(^2\) in Poland is estimated as **32–35%** (years: 2000–2011) \([3, 4]\);
- Development of **exploiting** of sources of lignite in Poland is forecasted till **2038** \([8]\) or even almost **2100** \([7]\);
- Sometimes **application** of **CCS** technology **could be problematic** (Bełchatów, Poland) \(\text{source}\);
- Current **Polish methodology** of estimation of CO\(_2\) emission from combustion of lignite **should be updated** due to availability of new pieces of information.

\(^2\) public energy and heat production sector.
Current methodology

How to? I

Everything that can be thought at all can be thought clearly.

Everything that can be said can be said clearly.

L. Wittgenstein

Emission estimation:

\[E_{\text{combustion}}^{\text{lignite}} = A \cdot EF_{\text{CO}_2} \]

\(A \) – activity of emission source (Mg of lignite mined, amount of electricity or heat produced);

\(EF \) – \(\text{CO}_2 \) emission factor (average mass of \(\text{CO}_2 \) produced from particular mass of combusted lignite or amount of electricity or heat produced).
What is (really) the CO₂ emission factor in case of carbon-based fuel?

- Let’s check it:
 - \(\text{C} + \text{O}_2 \rightarrow \text{CO}_2 \) – equation of CO₂ production during combustion
 - **Carbon content in fuel generates production of CO₂**
 - **12 kg of pure carbon creates (with oxygen) 44 kg of CO₂**

Fott [5] found linear dependency between calorific value and carbon content in case of hard coal and lignite.
Current methodology

Fott’s approach

According to Fott’s findings [5]:

- There is found strong linear correlation between NCV\(^3\) and carbon content in hard coal or lignite;
- The accuracy of CEF\(^4\) determination is better for hard (bituminous) coal than for brown coal (lignite);

The last finding suggests bigger variability of parameters of the lignite.

\(^3\) Net Calorific Value, lower heating value, e.g. [MJ/kg].

\(^4\) Carbon Emission Factor [t C/TJ].
Current methodology

Fott’s approach II

Formulas of dependency found by Fott [5]:

- wet coal and lignite: \(c_t^\prime = 2.400 \cdot Q_i^\prime + 4.1232 \);
- dry and ash removed coal and lignite: \(c_t^\prime = 2.333 \cdot Q_i^\prime + 5.511 \);
- selected country specific values: \(c_t^\prime = 2.334 \cdot Q_i^\prime + 5.5786 \);
- set ”A+B”: \(c_t^\prime = 2.344 \cdot Q_i^\prime + 5.056 \);

\(c_t^\prime \) – total carbon content [%]
\(Q_i^\prime \) – Net Calorific Value (NCV) [MJ/kg]
Current methodology

Current Polish methodology

Current Polish methodology is based on the Fott’s approach, there are found two types of linear dependency between carbon content and NCV [10]^5:

- for hard coal: \(c_t^r = 2.4898 \cdot Q_i^r + 3.3132; \)
- for lignite: \(c_t^r = 1.9272 \cdot Q_i^r + 9.3856. \)

^5 Original elaboration by: Olendrzyński et al., is not published
According to findings done by Stefanović et al. [11, 12], there are created similar linear functions describing dependence between calorific values and carbon content in lignite\(^6\):

- Šoštanj power plant: \(c_t^r = 2.2477 \cdot Q_i^r + 5.8216 \);
- Velenje: \(c_t^r = 2.3878 \cdot Q_i^r + 4.6548 \);
- Kolubara: \(c_t^r = 1.9272 \cdot Q_i^r + 4.2637 \).

\(^6\)Apart from that, we’ve done our little analysis – coming soon [14].
Assumptions I

Basing on modified Dulong formula [9]:

\[CV_D = 340.80c + 1427.70(h - \frac{o}{8}) + 92.20s - 25.50(w + 9h) \] \hspace{1cm} (1)

where:
\(c, h, o, s, w, p \) – mass fractions of: carbon, hydrogen, oxygen, sulphur, water (moisture) and ash

Formula for lignite "as derived":

\[c + (p + s + w) + n + h + o = 100\% \] \hspace{1cm} (2)
Assumptions II

Basing on [1, 13]: $p \approx 9\%, s \approx 1\%, w \approx 56\%$.

$p + s + w = 66\%$ (as derived)

and with dry and ash removed

$(h^{\text{daf}} \approx 6\%, n^{\text{daf}} \approx 1\%, o^{\text{daf}} \approx 20\%)$:

\[c + n + h + o = 34\% \] (3)

\[
\begin{array}{cccc}
73\% & 1\% & 6\% & 20\% \\
25\% & 0.34\% & 2\% & 7\%
\end{array}
\]
Assumptions III

Findings for Bełchatów mining field [2]:

\[w \% \sim N(\mu_w, \sigma_w) = N(56.30, 1.53); \]
\[s'_t \% \sim N(\mu_{s'_t}, \sigma_{s'_t}) = N(0.20, 0.02) \rightarrow \text{sulphur content total lignite as derived (wet)}; \]
\[CV \ [kJ/kg] \sim N(\mu_{CV}, \sigma_{CV}) = N(8010.73, 415.75) \ [kJ/kg]. \]

7 Analysis carried out for 63 samples from Bełchatów mining field – found normal distributions.
8 Converted from [kcal/kg].
As in equations (1) & (2):

$$340.80c = CV_D - 1427.70\left(h - \frac{o}{8}\right) - 92.20s + 25.50(w + 9h)$$ \hspace{2cm} (4)$$

$$c = \frac{CV_D}{340.80} - 0.2705s + 0.0748w - 3.516h + 0.5237o$$ \hspace{2cm} (5)$$

Assuming the normal distribution of variables: h and o, the variable c has the normal distribution.

As in equation (3) estimated $h \approx 2\%$ and $o \approx 7\%$, then:

$$c = \frac{CV}{340.80} - 0.2705s_t^r + 0.0748w - 0.0337, \quad CV_D \rightarrow CV, \quad s \rightarrow s_t^r$$ \hspace{2cm} (6)$$
Still linear dependency

cv <- rnorm(10000,8010.73,415.75) #;cv
s <- rnorm(10000,0.2,0.02) #;s
w <- rnorm(10000,0.563,0.0153) #;w
c <- cv/340.8-0.2705*s+0.0748*w-0.0337 #;c
> lm(c ~ cv)
Call:
 lm(formula = c ~ cv)
Coefficients:
 (Intercept) cv
-0.043416 0.002934 → for CV[kJ/kg]

for CV[MJ/kg]:
 \[c'_r = 2.934 \cdot Q'_i - 0.043416; \]
Currently used formula:
 \[c'_r = 1.9272 \cdot Q'_i + 9.3856 \]
Monte Carlo simulation

For 1000 samples. `c.norm <- (c-mean(c))/sd(c)` #By analogy for 1000 samples
Advantages

😊 Model is simple and can be easily developed by adding new information about lignite (e.g. parameters, resources, time of mining from particular field or any other);

😊 We can generate some parameters without carrying out specific analysis (e.g. chemical);

😊 We can quickly calculate uncertainties;

😊 Good for engineering purposes.
Disadvantages

- The assumptions say that the variables: c, s, w, h and o are uncorrelated – we can introduce particular correlations between variables, but it makes model more and more complicated;

- Model doesn’t take into consideration differences between export and import of lignite.
Thank you for your attention 😊

Contact information:

Damian Zasina
damian.zasina@gmail.com
or damian.zasina@kobize.pl

Jarosław Zawadzki
j.j.zawadzki@gmail.com

Powered by: \textit{R} \hspace{1cm} \textbf{RStudio} \hspace{1cm} \LaTeX
References

Bartuś T., *Contribution to research of the local, horizontal variability the main lignite qualitative parameters in the central part of the Bełchatów lignite deposit. Statistical analysis*, 2007.

EMA, *Basic data about electricity production*, Energy Market Agency, Poland, Published: EMA, article online, 2013.

References II

References III
